您选择的条件: Cheng Wang
  • Random matrix description of dynamically backscattered coherent waves propagating in a wide-field-illuminated random medium

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The wave propagation in random medium plays a critical role in optics and quantum physics. Multiple scattering of coherent wave in a random medium determines the transport procedure. Brownian motions of the scatterers perturb each propagation trajectory and form dynamic speckle patterns in the backscattered direction. In this study, we applied the random matrix theory (RMT) to investigate the eigenvalue density of the backscattered intensity matrix. We find that the dynamic speckle patterns can be utilized to decouple the singly and multiply backscattered components. The Wishart random matrix of multiple scattering component is well described by the Marcenko-Pastur law, while the single scattering part has low-rank characteristic. We therefore propose a strategy for estimating the first and the second order moments of single and multiple scattering components, respectively, based on the Marcenko-Pastur law and trace analysis. Electric field Monte Carlo simulation and in-vivo experiments demonstrate its potential applications in hidden absorbing object detection and in-vivo blood flow imaging. Our method can be applied to other coherent domain elastic scattering phenomenon for wide-filed propagation of microwave, ultrasound and etc.

  • Systematic Investigation of Millimeter-Wave Optic Modulation Performance in Thin-Film Lithium Niobate

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Millimeter-wave (mmWave) band (30 - 300 GHz) is an emerging spectrum range for wireless communication, short-range radar and sensor applications. mmWave-optic modulators that could efficiently convert mmWave signals into optical domain are crucial components for long-haul transmission of mmWave signals through optical networks. At these ultrahigh frequencies, however, the modulation performances are highly sensitive to the transmission line loss as well as the velocity- and impedance-matching conditions, while precise measurements and modeling of these parameters are often non-trivial. Here we present a systematic investigation of the mmWave-optic modulation performances of thin-film lithium niobate modulators through theoretical modeling, electrical verifications and electro-optic measurements at frequencies up to 325 GHz. Based on our experimentally verified model, we demonstrate thin-film lithium niobate mmWave-optic modulators with a measured 3-dB electro-optic bandwidth of 170 GHz and a 6-dB bandwidth of 295 GHz. The device also shows a low RF half-wave voltage of 7.3 V measured at an ultrahigh modulation frequency of 250 GHz. This work provides a comprehensive guideline for the design and characterization of mmWave-optic modulators and paves the way toward future integrated mmWave photonic systems for beyond-5G communication and radar applications.

  • Design and resonator-assisted characterization of high performance lithium niobate waveguide crossings

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Waveguide crossings are elementary passive components for signal routing in photonic integrated circuits. Here, we design and characterize two multimode interferometer (MMI)-based waveguide crossings to serve the various routing directions in the anisotropic x-cut thin-film lithium niobate (TFLN) platform. To address the large measurement uncertainties in traditional cut-back characterization methods, we propose and demonstrate a resonator-assisted approach that dramatically reduces the uncertainty of insertion loss measurement(< 0.021 dB) and the lower bound of crosstalk measurement (-60 dB) using only two devices. Based on this approach, we demonstrate and verify TFLN waveguide crossings with insertion losses of < 0.070 dB and crosstalk of < -50 dB along all three routing directions at 1550 nm. The low-loss and low-crosstalk waveguide crossings in this work, together with the simple and efficient characterization strategy, could provide important layout design flexibility for future large-scale classical and quantum TFLN photonic circuits.

  • A power-efficient integrated lithium niobate electro-optic comb generator

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Integrated electro-optic (EO) frequency combs are essential components for future applications in optical communications, light detection and ranging, optical computation, sensing and spectroscopy. To date, broadband on-chip EO combs are typically generated in high-quality-factor micro-resonators, while the more straightforward and flexible non-resonant method, usually using single or cascaded EO phase modulators, often requires high driving power to realize a reasonably strong modulation index. Here, we show that the phase modulation efficiency of an integrated lithium niobate modulator could be dramatically enhanced by passing optical signals through the modulation electrodes for a total of 4 round trips, via multiple low-loss TE0/TE1 mode multiplexers and waveguide crossings, reducing electrical power consumption by more than one order of magnitude. Using devices fabricated from a wafer-scale stepper lithography process, we demonstrate a broadband optical frequency comb featuring 47 comb lines at a 25-GHz repetition rate, using a moderate RF driving power of 28 dBm (0.63 W). Leveraging the excellent tunability in repetition rate and operation wavelength, our power-efficient EO comb generator could serve as a compact low-cost solution for future high-speed data transmission, sensing and spectroscopy, as well as classical and quantum optical computation systems.

  • Inverse-designed lithium niobate nanophotonics

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Lithium niobate-on-insulator (LNOI) is an emerging photonic platform that exhibits favorable material properties (such as low optical loss, strong nonlinearities, and stability) and enables large-scale integration with stronger optical confinement, showing promise for future optical networks, quantum processors, and nonlinear optical systems. However, while photonics engineering has entered the era of automated "inverse design" via optimization in recent years, the design of LNOI integrated photonic devices still mostly relies on intuitive models and inefficient parameter sweeps, limiting the accessible parameter space, performance, and functionality. Here, we develop and implement a 3D gradient-based inverse-design model tailored for topology optimization of the LNOI platform, which not only could efficiently search a large parameter space but also takes into account practical fabrication constraints, including minimum feature sizes and etched sidewall angles. We experimentally demonstrate a spatial-mode multiplexer, a waveguide crossing, and a compact waveguide bend, all with low insertion losses, tiny footprints, and excellent agreement between simulation and experimental results. The devices, together with the design methodology, represent a crucial step towards the variety of advanced device functionalities needed in future LNOI photonics, and could provide compact and cost-effective solutions for future optical links, quantum technologies and nonlinear optics.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心